
Table-top Interfaces You Can Rotate: Rendering Issues

Billy Biggs

Faculty of Computer Science
Dalhousie University
biggs@cs.dal.ca

Abstract
Users often arrange items on a table-top with total dis-

regard for the natural axis of the table itself. One often
finds it more comfortable to tilt personal writing or work-
ing space to a comfortable viewing angle. We present
examples of rendering issues faced by interfaces which
allow rotation, and explore potential flaws in their imple-
mentation.

Key words: Rotatable interfaces, gridfitting, computer
supported cooperative work, tabletop displays.

1 Introduction

Table-top displays are suitable for allowing users to rotate
objects in the work area to fit their personal preference
[4]. In a collaborative setting, user interface components
are often oriented to better accommodate the group ar-
rangement, tilting the work area such that all members of
the group can easily read and interact with the items, and
objects are tilted throughout the session.

Modern user interfaces often make use of axis-aligned
detail for improving clarity and sharpness on low reso-
lution displays. Cursors and interface widgets are often
drawn by hand at the pixel level. The process of ren-
dering high quality text at small pixel sizes is called font
hinting, where a font or font system specifies how to en-
sure legibility of the individual characters, or glyphs, re-
tain clarity. This process is usually done manually by the
typographer, and is created specifically for axis-aligned
text.

For rotated interfaces, these techniques become either
useless, or in the case of font hinting, some automatic
techniques may still apply while many are orientation
specific. Current table-top displays are often constructed
with a larger pixel size than a desktop display to provide
a larger working area, but also increasing the need for
rendering low-resolution details as clearly as possible.

We explore the issue of rendering interfaces that can
rotate in an attempt to produce a set of guidelines for in-
terface designers regarding the size and shape of graphics
and text suitable for rotation without visible artifacts. We
focus primarily on text rendering, as we are given a sit-

uation where a vectorized representation of the source is
available, as well as a modified gridfitted version. We
present requirements for rotated interfaces, discuss font
hinting techniques and identify areas we believe cause
problems, and discuss our method for exploring these is-
sues.

2 Requirements for rotated interfaces

Graphical user interfaces often exploit the alignment of
the pixels on a display to add sharp details. Window
borders are discontinuities which occur on exact pixel
boundaries, and single-pixel thin lines adorn many inter-
face widgets. Cursors, window adornments, and icons are
often hand edited at the pixel level. Upon rotation, we ar-
gue that many of these components will exhibit artifacts
relating to undersampling.

2.1 Interactivity constraints
For a seamless user experience on a table, it is natural
to allow objects to be rotated interactively. For example,
a user may be provided with a rotation handle on each
window or work area such that it may be angled dynami-
cally. This places an additional constraint on our render-
ing engine: the engine should avoid having certain angles
suddenly “pop” into clarity, as this effect is distracting.

3 Font hinting

Font hinting is a technique used to improve readability of
text at small sizes relative to the pixel grid [6]. The two
main font hinting systems in use today are the TrueType
font hinting system [1], and Adobe’s Type 1 font hint-
ing system [3]. In the TrueType system, font hinting is
performed using a bytecode interpreter, where the typog-
rapher provides a program that performs modifications of
glyph given the target output size, giving the ability to
specify the output on a pixel level if necessary.

The process of font hinting generally involves perturb-
ing the vertices of a vector representation of the font’s
glyphs such that the following properties are met:

1. Each of the glyphs of a font at a certain size are not
individually too large as to exhibit a difference in
shade between characters;



2. Characters are spaced such that they do not touch;

3. Characters remain at a consistent alignment;

4. Symmetry properties of letters are preserved; and

5. Aesthetic features are preserved.

We may be able to preserve some properties on rota-
tion, but other decisions by the font hinter may be inap-
plicable or even detrimental, or may cause discontinuities
upon interactive rotation.

4 Method and rationale

Our intention is to better understand the following ques-
tions:

1. What elements of font hinting are applicable to ro-
tated text?

2. Does it make sense to apply hinting at all before ro-
tation?

3. What artifacts occur if we apply hinting rules during
interactive rotation?

4. Is there a reasonable bound that we can place on line
or detail size such that their geometric properties are
preserved under rotation?

We believe that focusing on text rendering will give
insight for rendering of other user interface components
where both vector and pixel representations may be avail-
able.

We evaluate examples rendered using the open-source
text renderer FreeType [5], our own 2D renderer for small
pixel details, and rotated screenshots of common applica-
tions. Our evaluation of font hinting techniques is based
on the bytecode interpreter methods available in the True-
Type font system [1].

For evaluation of detail size and appearance, we pro-
vide some signal processing results. Also, we investigate
size and shape geometrically by assuming that pixels are
exact squares. We feel that table-top displays are likely to
be driven either by LCD projectors or LCD panels, since
the physical constraints of a CRT make it less suited for
mounting under or on top of a table. Therefore, a geomet-
ric analysis of the output is warranted when evaluating
detail size. For this evaluation we use the work of John
Hobby [2].

5 Conclusions

We provide some reasonable bounds and recommenda-
tions for rendering user interfaces allowing interactive ro-
tations and use at angles unaligned with the pixel grid.

We do this by empirical evaluation of font hinting and ro-
tation of small details, and some theoretical evaluation of
the geometric properties of the results, assuming an LCD
panel display with a box reconstruction filter.

Figure 1: Bitmap font rotated 3 degrees using nearest-
neighbour scaling

Figure 2: Bitmap font rotated 3 degrees using bilinear
interpolation

References

[1] Microsoft Corporation. The truetype font system.
http://www.microsoft.com/typography/default.asp,
2003.

[2] John D. Hobby. Rasterizing curves of constant width.
Journal of the ACM, 36(2):209–229, 1989.

[3] Adobe Systems Inc. Adobe type 1 font format. 1990.

[4] K. O’Hara and A. Sellen. A comparison of reading
paper and on-line documents, 1997.

[5] FreeType Project. The freetype font renderer.
http://www.freetype.org, 2003.

[6] Douglas E. Zongker, Geraldine Wade, and David H.
Salesin. Example-based hinting of truetype fonts.
In Kurt Akeley, editor, Siggraph 2000, Computer
Graphics Proceedings, pages 411–416. ACM Press
/ ACM SIGGRAPH / Addison Wesley Longman,
2000.


	Introduction
	Requirements for rotated interfaces
	Interactivity constraints

	Font hinting
	Method and rationale
	Conclusions

