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Introduction

• The ultimate goal: physically-based visual plausibility

• Can we generate scenes that appear realistic through better simulation
of both light transport and the human eye?

Approach the problem in three stages:

1. Realistic model of light transport

2. Realistic model of the eye

3. Appropriate conversion from our eye model to a digital image
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On the nature of light

• Most effects we wish to render can be described using ray optics

• Light interactions occur in the spectral domain

• Basic operations: absorbtion, fluorescence, phosphorescence

• However, our eyes perceive light in a 3 dimensional space

• metamers: Two unique spectra with the same visual appearance
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What advantages does spectral rendering provide?

• Accuracy!!

Many operations are impossible with only 3 dimensional colour

1. Handling metamers correctly under absorbtion and transmission and
under different illuminants

2. Materials which shift power along the spectrum (fluorescence)

3. Handling wavelength-dependent changes in light direction:
refraction and dispersion
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Conversions to and from spectral representations

• Converting from a power distribution to a three-dimensional space is no
big deal

X = k

∫
Φ(λ)x̄(λ)dλ

Y = k

∫
Φ(λ)ȳ(λ)dλ

Z = k

∫
Φ(λ)z̄(λ)dλ

• Converting the other way is annoying
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RGB spectral representation
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Implementation options for spectral rendering

• Increase the number of basis functions

• Choose a small number of stratified wavelengths and render the full scene
for each

• Randomly sample by wavelength
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Stratified Wavelength Clusters (Evans and McCool 1999)

• Apply monte-carlo sampling on the spectrum of each output pixel

• Randomly sample a set of wavelengths per path, trace them together

• Wavelengths sampled from the cdf of a random light source

Qi =
∫ ∫ ∫

WQ
ij (λ, x̄, ω̂)L(λ, x̄, ω̂)dx̄dω̂dλ
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Sampling...

• If there are many light sources, must find appropriate weights and add
this to our estimate

• Fluorescence: extending the possible range of wavelengths required

• Dealing with refraction: degradation of frequencies in path
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Cornell box: RGB version
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Cornell box: SWC version
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A scene under a yellow illuminant
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The same scene using XYZ
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Model of the eye

• There are four types of receptors: three types of cones, and rods

• Visual mode also plays a factor: photopic, mesopic and scotopic.

• Model is defined as an image in log XY ZV ′ and a visual mode value s.
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Why V ′ and s: Scotopic vision
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Scotopic luminous efficiency is a shift of the photopic
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An approximation for V ′

From Pattanaik 1998: R = −0.702X + 1.039Y + 0.433Z
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Effects gained from a model of the eye

1. Glare

2. Chromatic adaptation and dynamic range compression

3. Night-Vision

18



A model for glare

• Increase perceived dynamic range by modeling how high intensity sources
perceived by the eye

• Caused by scattering of light as it enters the cornea and the lens
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What’s up with glare, anyway?
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A model for glare

• Luckily, we can calculate glare maps for each of XY ZV ′ individually

• Also, glare only depends on the angular size of the bright object, and
can be precalculated for a given scene
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Chromatic adaptation and dynamic range compression

• Chromatic adaptation occurs when the eye adjusts to the colour of the
illuminants in the scene

• Not as interesting for generated images. more useful for image processing

• The eye can adapt to images with a high dynamic range
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Dynamic range methods

• Linear compression, other approximations (Schlick)

• Local scaling methods (Chiu)

• Multi-layer bandpass filtered images (Ferwerda, Ward, Pattanaik)
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Night Vision

• The usual mapping for scotopic vision in tone mapping is to blur images
in low light situation to simulate the loss of acuity

• Jensen et al (Siggraph 2001) argues that the scene should also shift to
become more blue, but there is a lack of empirical data to simulate this
’accurately’

• Their method of hue mapping shifts the chromaticities of the colours
and also shifts the luminance towards the scotopic luminous efficiency
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Cornell box at night
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Cornell box at night: mapped
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Cornell box at night: more blue as we get darker
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Converting for a display device

• Unfortunately, many of the above steps have already required data about
the display device!

• Still need to gamut map and gamma correct
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Our final processing Pipeline

1. Process input colours to spectra

2. Render using SWC to XY ZV ′

3. Compute visual function information

4. Apply a digital glare filter

5. Filter the image for chromatic adaptation, acuity, and dynamic range

6. Apply subjective night-vision mapping

7. Gamut-map and gamma correct for digital display
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